1. Oxigenoterapia

Oxygen therapy Terapia de oxigênio

Introducción

Oxigenoterapia es el uso terapéutico de oxígeno (O₂) en concentraciones mayores a la del aire ambiental (21%), para prevenir y tratar la hipoxia, y asegurar las necesidades metabólicas del organismo. La necesidad de oxigenoterapia se determina por la presencia de una inadecuada presión parcial de oxígeno en sangre arterial (PaO₂), que se correlaciona con baja saturación de oxígeno de la hemoglobina. Se administra O₂ cuando la PaO₂ en sangre arterial es menor de 60 mmHg, o cuando la saturación de hemoglobina en sangre periférica es menor de 93%-95%⁽¹⁾.

Para lograr una adecuada entrega de O_2 a los tejidos se requiere:

- Adecuado intercambio de gases a nivel pulmonar.
- Flujo sanguíneo pulmonar uniforme y suficiente.
- Suficiente concentración de hemoglobina en sangre.

Objetivos del tratamiento⁽¹⁻³⁾

- Mejorar la oxigenación.
- Disminuir o prevenir la hipoxemia.
- Prevenir o corregir la hipoxia.

Definiciones⁽¹⁻³⁾

- Fracción inspirada de O₂ (FiO₂): porcentaje de O₂ disuelto en el aire inspirado.
- Hipoxemia: disminución del O₂ disuelto en sangre arterial.
- Hipoxia: disminución del suministro de O₂ a los tejidos.
- Ventilación alveolar: renovación periódica del gas alveolar a través del movimiento de gases desde la atmósfera a los alvéolos, y viceversa.
- **Difusión:** mecanismo por el cual el O₂ y el anhídrido carbónico (CO₂) pasan a través de las membranas alvéolo-capilares.
- Perfusión pulmonar: flujo sanguíneo a nivel del capilar pulmonar, que debe ser adecuado en volumen, y distribuido uniformemente en todos los alvéolos ventilados. La eficacia del intercambio ga-

seoso depende de una adecuada relación entre ventilación y perfusión.

Dispositivos para la administración de oxígeno⁽¹⁻³⁾

El O_2 se puede administrar mediante diferentes dispositivos, dependiendo de la FiO_2 necesaria y de la condición clínica del niño. Estos pueden clasificarse en sistemas de bajo y alto flujo (figura 1).

Sistemas de bajo flujo

El O₂ administrado se mezcla con el aire inspirado y como resultado se obtiene una FiO₂ variable, que depende del dispositivo utilizado y del volumen de aire inspirado. Es el sistema de elección si el patrón respiratorio es estable.

Dentro de los sistemas de bajo flujo se encuentran:

- Cánula nasal.
- Máscara de flujo libre.
- Máscara con reservorio sin válvulas colocadas.

Sistemas de alto flujo

Estos sistemas aportan mezclas preestablecidas de gas, con FiO_2 altas o bajas. Algunos (máscara de Vénturi, máscara con reservorio y Hood) utilizan el sistema Vénturi, con base en el principio de Bernuolli, por el cual el equipo mezcla en forma estandarizada el O_2 con aire proveniente del ambiente a través de orificios de diferente diámetro. Otros (catéter nasal de alto flujo) logran la mezcla a través de un mezclador. Se suministra al paciente una FiO_2 conocida.

Son sistemas de alto flujo:

- Máscara de Vénturi o de flujo controlado.
- Máscara con reservorio con válvulas.
- Catéter nasal de alto flujo (CNAF).

Cánula nasal. De silicona o plástico, consta de una tubuladura, con una zona central con dos tutores, que se colocan en las narinas. Permite administrar una FiO₂ cercana a 24% con O₂ a 1 l/min, y a 28% con O₂ a 2 l/min. La FiO₂ exacta que permite este dispositivo de-

Figura 1. Dispositivos para la administración de oxígeno.

pende, además, del patrón respiratorio. No se recomienda utilizar flujos de O₂ mayores a 2 l/min en niños, porque pueden producir daño de la mucosa naso-faríngea. En estos casos debe utilizarse un frasco humificador.

Máscara de flujo libre. Puede suministrar una FiO_2 de 0,35 a 0,50 (35% a 50% de O_2), con flujos de 5 a 10 litros por minuto. Es necesario mantener un flujo mínimo de 5 litros por minuto, para evitar la reinhalación del CO_2 , secundaria a la acumulación de aire espirado en la máscara. Debe utilizarse siempre con humidificación, mediante frasco lavador.

Máscara de flujo controlado o Vénturi. Proporciona una FiO_2 estable y conocida, ya que permite la mezcla de aire con O_2 en forma controlada. Proporciona una FiO_2 constante (24%, 28%, 32%) con flujos predeterminados de O_2 . Se utiliza de preferencia en pacientes que retienen CO_2 , en quienes concentraciones altas de O_2 pueden determinar hipoventilación.

Máscara con reservorio. Permite una Fi O_2 entre 55 y 70%, si se utiliza sin válvulas, y entre 70 y 100%, con válvulas (es decir, sin reinhalación). Su uso debe ser por períodos breves de tiempo, debido a que el O_2 a altas concentraciones es tóxico a nivel pulmonar.

Catéter nasal de alto flujo. Logra, a través de la humidificación y calentamiento de una mezcla de oxígeno y aire, flujos elevados (hasta 50 l/min), con buena tolerancia por parte del paciente. Permite, con un mezclador de aire y oxígeno, aportar una FiO₂ conocida, que puede ir desde 21% hasta 100%, según necesidad. Sus mecanismos de acción son entre otros: lavado del espacio muerto naso-faríngeo, disminución de la resistencia inspiratoria, mejoría de la complacencia y elasticidad pulmonar, reducción del trabajo metabólico y generación de cierto grado de presión de distención (este es variable, impredecible y no regulable).

En la mayoría de las situaciones en las que se requiere soporte respiratorio, se prefiere la utilización de catéteres nasales, de bajo o alto flujo, de acuerdo a la situación clínica^(4,5).

Ventajas de los catéteres nasales:

- Fáciles de usar.
- No interfieren con la alimentación.
- Permiten mantener la administración de medicación por vía oral o inhalatoria.

Desventajas de los catéteres nasales:

- Lesiones de apoyo en la mucosa nasal o en los sitios de fijación, en la cara.
- Distensión gástrica.
- Regurgitación.

Monitorización de la oxigenoterapia

El O₂ es un medicamento y como tal, debe ser administrado con indicación y en dosis correcta, para evitar complicaciones. Su uso debe ser monitorizado. Esta monitorización se puede realizar mediante dos procedimientos: la gasometría arterial (método invasivo) y la oximetría de pulso (método no invasivo).

Oximetría de pulso (figura 2)

Método no invasivo de monitorización, que permite detectar hipoxemia. Emite luz en dos longitudes de onda, la hemoglobina absorbe la luz y la transmite a un detector. El fotodetector mide la cantidad de luz que atraviesa los tejidos, y con la ayuda de un microprocesador se calcula el porcentaje de hemoglobina saturada (saturación de O_2).

Ventajas de la oximetría de pulso:

- No invasiva, permite una monitorización continua.
- Disminuye el número de muestras arteriales.
- Método sencillo, barato, de fácil acceso.
- Fiable para valores entre 80% a 100%.

Desventajas de la oximetría de pulso:

- No valora la ventilación.
- La saturación no se afecta hasta que la PaO₂ cae por debajo de 60 mm Hg.

Figura 2. Oximetría de pulso.

- Medición falsa en presencia de metahemoglobina o carboxihemoglobina, o ante cifras altas de bilirrubina
- Puede haber errores en la medición causados por mala perfusión periférica, movimientos excesivos del niño, luz ambiental intensa, interferencias con otros aparatos eléctricos.

Técnica:

- Tranquilizar al niño.
- Utilizar el sensor de tamaño adecuado a la edad.
- Verificar que la piel esté cálida y seca.
- Lograr una curva uniforme y estable, verificando que la frecuencia cardíaca que indica el saturómetro concuerde con la que tiene el niño.
- Debe mantenerse una saturación de O₂ entre 93% y 95%, con la menor FiO₂ posible. Para suspender la oxigenoterapia, es necesario disminuir gradualmente la FiO₂ aportada, evitando la suspensión de O₂ en forma brusca. Cuando un paciente está recibiendo oxigenoterapia, no debe interrumpirse este tratamiento en ningún momento (ni para realización de exámenes, ni para alimentarse o trasladarse). Para los traslados es necesario contar con balón de oxígeno.

Gasometría

Permite conocer el estado de los gases y el equilibrio ácido-base en sangre. Puede realizarse de sangre veno-

Tabla 1. Valores normales de gasometría arterial y venosa.

	Gasometría arterial	Gasometría venosa
pН	7,38–7,42	7,36–7,40
pO_2	90–100 mmHg	35–45 mmHg
pCO_2	35–45 mmHg	40–50 mmHg
$SatO_2$	95–97%	55-70%
HCO ₃	21–29 mmol/l	24-30 mmol/l
BE	-2 a +2	-2 a + 2

sa o arterial. La gasometría venosa permite evaluar al niño con insuficiencia respiratoria mediante la valoración del pH y la pCO₂⁽⁶⁾. Los valores normales de la gasometría arterial y venosa se muestran en la tabla 1.

Si se dispone de datos confiables de saturación, no es necesaria la punción arterial, que es muy dolorosa y puede complicarse con lesión arterial. Si se consideran indispensables los valores gasométricos arteriales, solo puede puncionarse las arterias radial y pedia.

Referencias bibliográficas

- De Leonardis D, Prego J, Bello O. Insuficiencia respiratoria aguda. En: Bello O, Sehabiague G, De Leonardis D. Pediatría: urgencias y emergencias. 3 ed. Montevideo: Bibliomédica, 2009.
- García T. Oxigenoterapia. En: Casado Flores J. Urgencias y tratamiento del niño grave. 2 ed. Barcelona: Océano, 2007.
- González H. Oxigenoterapia. En: Macri C, Teper A. Enfermedades respiratorias pediátricas. México: McGraw-Interamericana, 2003.
- Haq I, Gopalakaje S, Fenton A, McKean M, O'Brien C, Brodlie M. The evidence for high flow nasal cannula devices in infants. Paediatr Respir Rev 2014; 15(2):124-34.
- Patiño J. Gases sanguíneos, fisiología de la respiración e insuficiencia respiratoria aguda. 7 ed. Bogotá: Panamericana, 2005
- Pilar J, López Y. Oxigenoterapia de alto flujo. An Pediatr Contin 2014; 12(1):25-9.